Modern Geometry - Methods and Applications
-15 %

Modern Geometry - Methods and Applications

Part I: The Geometry of Surfaces, Transformation Groups, and Fields
 Book
Print on Demand | Lieferzeit:3-5 Tage I

Unser bisheriger Preis:ORGPRICE: 66,71 €

Jetzt 56,45 €*

Alle Preise inkl. MwSt. | zzgl. Versand
ISBN-13:
9781461287568
Einband:
Book
Erscheinungsdatum:
28.10.2011
Seiten:
492
Autor:
B. A. Dubrovin
Gewicht:
737 g
Format:
235x155x26 mm
Sprache:
Englisch
Beschreibung:

This is the first volume of a three-volume introduction to modern geometry, with emphasis on applications to other areas of mathematics and theoretical physics. Topics covered include tensors and their differential calculus, the calculus of variations in one and several dimensions, and geometric field theory. This material is explained in as simple and concrete a language as possible, in a terminology acceptable to physicists. The text for the second edition has been substantially revised.
1 Geometry in Regions of a Space. Basic Concepts.-1. Co-ordinate systems.- 1.1. Cartesian co-ordinates in a space.- 1.2. Co-ordinate changes.-
2. Euclidean space.- 2.1. Curves in Euclidean space.- 2.2. Quadratic forms and vectors.-
3. Riemannian and pseudo-Riemannian spaces.- 3.1. Riemannian metrics.- 3.2. The Minkowski metric.-
4. The simplest groups of transformations of Euclidean space.- 4.1. Groups of transformations of a region.- 4.2. Transformations of the plane.- 4.3. The isometries of 3-dimensional Euclidean space.- 4.4. Further examples of transformation groups.- 4.5. Exercises.-
5. The Serret-Frenet formulae.- 5.1. Curvature of curves in the Euclidean plane.- 5.2. Curves in Euclidean 3-space. Curvature and torsion.- 5.3. Orthogonal transformations depending on a parameter.- 5.4. Exercises.-
6. Pseudo-Euclidean spaces.- 6.1. The simplest concepts of the special theory of relativity.- 6.2. Lorentz transformations.- 6.3. Exercises.- 2 The Theory of Surfaces.-
7. Geometry on a surface in space.- 7.1. Co-ordinates on a surface.- 7.2. Tangent planes.- 7.3. The metric on a surface in Euclidean space.- 7.4. Surface area.- 7.5. Exercises.-
8. The second fundamental form.- 8.1. Curvature of curves on a surface in Euclidean space.- 8.2. Invariants of a pair of quadratic forms.- 8.3. Properties of the second fundamental form.- 8.4. Exercises.-
9. The metric on the sphere.-
10. Space-like surfaces in pseudo-Euclidean space.- 10.1. The pseudo-sphere.- 10.2. Curvature of space-like curves in $$
mathbb{R}_1^3
$$.-
11. The language of complex numbers in geometry.- 11.1. Complex and real co-ordinates.- 11.2. The Hermitian scalar product.- 11.3. Examples of complex transformation groups.-
12. Analytic functions.- 12.1. Complex notation for the element of length, and for the differential of a function.- 12.2. Complex co-ordinate changes.- 12.3. Surfaces in complex space.-
13. The conformal form of the metric on a surface.- 13.1. Isothermal co-ordinates. Gaussian curvature in terms of conformal co-ordinates.- 13.2. Conformal form of the metrics on the sphere and the Lobachevskian plane.- 13.3. Surfaces of constant curvature.- 13.4. Exercises.-
14. Transformation groups as surfaces in N-dimensional space.- 14.1. Co-ordinates in a neighbourhood of the identity.- 14.2. The exponential function with matrix argument.- 14.3. The quaternions.- 14.4. Exercises.-
15. Conformal transformations of Euclidean and pseudo-Euclidean spaces of several dimensions.- 3 Tensors: The Algebraic Theory.-
16. Examples of tensors.-
17. The general definition of a tensor.- 17.1. The transformation rule for the components of a tensor of arbitrary rank.- 17.2. Algebraic operations on tensors.- 17.3. Exercises.-
18. Tensors of type (0, k).- 18.1. Differential notation for tensors with lower indices only.- 18.2. Skew-symmetric tensors of type (0, k).- 18.3. The exterior product of differential forms. The exterior algebra.- 18.4. Skew-symmetric tensors of type (k, 0) (polyvectors). Integrals with respect to anti-commuting variables.- 18.5. Exercises.-
19. Tensors in Riemannian and pseudo-Riemannian spaces.- 19.1. Raising and lowering indices.- 19.2. The eigenvalues of a quadratic form.- 19.3. The operator ?.- 19.4. Tensors in Euclidean space.- 19.5. Exercises.-
20. The crystallographic groups and the finite subgroups of the rotation group of Euclidean 3-space. Examples of invariant tensors.-
21. Rank 2 tensors in pseudo-Euclidean space, and their eigenvalues.- 21.1. Skew-symmetric tensors. The invariants of an electromagnetic field.- 21.2. Symmetric tensors and their eigenvalues. The energy-momentum tensor of an electromagnetic field.-
22. The behaviour of tensors under mappings.- 22.1. The general operation of restriction of tensors with lower indices.- 22.2. Mappings of tangent spaces.-
23. Vector fields.- 23.1. One-parameter groups of diffeomorphisms.- 23.2. The exponential function of a vector field.- 23.3. The Lie derivative.- 23.4. Exer
This is the first volume of a three-volume introduction to modern geometry which emphasizes applications to other areas of mathematics and theoretical physics. Topics covered include tensors and their differential calculus, the calculus of variations in one and several dimensions, and geometric field theory. This new edition offers substantial revisions, and the material is written in concrete language with terminology acceptable to physicists.