Principles of Heat Transfer in Porous Media
-12 %

Principles of Heat Transfer in Porous Media

 Book
Print on Demand | Lieferzeit:3-5 Tage I

Unser bisheriger Preis:ORGPRICE: 139,09 €

Jetzt 122,40 €*

Alle Preise inkl. MwSt. | zzgl. Versand
ISBN-13:
9781461287100
Einband:
Book
Erscheinungsdatum:
19.11.2011
Seiten:
740
Autor:
Maasoud Kaviany
Gewicht:
1099 g
Format:
235x155x39 mm
Sprache:
Englisch
Beschreibung:

This monograph reviews in a concise and unified manner recent contributions to the principles of convective heat transfer for single - and multi-phase systems: It summarizes the role of the fundamental mechanism, discusses the governing differential equations, describes approximation schemes and phenomenological models, and examines their solutions and applications.
1 Introduction.- 1.1 Historical Background.- 1.2 Length, Time, and Temperature Scales.- 1.3 Scope.- 1.4 References.- I Single-Phase Flow.- 2 Fluid Mechanics.- 2.1 Stokes Flow and Darcy Equation.- 2.2 Porosity.- 2.3 Pore Structure.- 2.4 Permeability.- 2.4.1 Capillary Models.- 2.4.2 Hydraulic Radius Model.- 2.4.3 Drag Models for Periodic Structures.- 2.5 High Reynolds Number Flows.- 2.5.1 Macroscopic Models.- 2.5.2 Microscopic Fluid Dynamics.- 2.5.3 Turbulence.- 2.6 Brinkman Superposition of Bulk and Boundary Effects.- 2.7 Local Volume-Averaging Method.- 2.7.1 Local Volume Averages.- 2.7.2 Theorems.- 2.7.3 Momentum Equation.- 2.8 Homogenization Method.- 2.8.1 Continuity Equation.- 2.8.2 Momentum Equation.- 2.9 Semiheuristic Momentum Equations.- 2.10 Significance of Macroscopic Forces.- 2.10.1 Macroscopic Hydrodynamic Boundary Layer.- 2.10.2 Macroscopic Entrance Length.- 2.11 Porous Plain Media Interfacial Boundary Conditions.- 2.11.1 Slip Boundary Condition.- 2.11.2 On Beavers-Joseph Slip Coefficient.- 2.11.3 Taylor-Richardson Results for Slip Coefficient.- 2.11.4 Slip Coefficient for a Two-Dimensional Structure.- 2.11.5 No-Slip Models Using Effective Viscosity.- 2.11.6 Variable Effective Viscosity for a Two-Dimensional Structure.- 2.11.7 Variable Permeability for a Two-Dimensional Structure.- 2.12 Variation of Porosity near Bounding Impermeable Surfaces.- 2.12.1 Dependence of Average Porosity on Linear Dimensions of System.- 2.12.2 Local Porosity Variation.- 2.12.3 Velocity Nonuniformities Due to Porosity Variation.- 2.12.4 Velocity Nonuniformity for a Two-Dimensional Structure.- 2.13 Analogy with Magneto-Hydrodynamics.- 2.14 References.- 3 Conduction Heat Transfer.- 3.1 Local Thermal Equilibrium.- 3.2 Local Volume Averaging for Periodic Structures.- 3.2.1 Local Volume Averaging.- 3.2.2 Determination of bf and bs.- 3.2.3 Numerical Values for bf and bs.- 3.3 Particle Concentrations from Dilute to Point Contact.- 3.4 Areal Contact Between Particles Caused by Compressive Force.- 3.4.1 Effect of Rarefaction.- 3.4.2 Dependence of Gas Conductivity on Knudsen Number.- 3.5 Statistical Analyses.- 3.5.1 A Variational Formulation.- 3.5.2 A Thermodynamic Analogy.- 3.6 Summary of Correlations.- 3.7 Adjacent to Bounding Surfaces.- 3.7.1 Temperature Slip for a Two-Dimensional Structure.- 3.7.2 Variable Effective Conductivity for a Two-Dimensional Structure.- 3.8 On Generalization.- 3.9 References.- 4 Convection Heat Transfer.- 4.1 Dispersion in a Tube-Hydrodynamic Dispersion.- 4.1.1 No Molecular Diffusion.- 4.1.2 Molecular Diffusion Included.- 4.1.3 Asymptotic Behavior for Large Elapsed Times.- 4.1.4 Turbulent Flow.- 4.2 Dispersion in Porous Media.- 4.3 Local Volume Average for Periodic Structures.- 4.3.1 Local Volume Averaging for ks = 0.- 4.3.2 Reduction to Taylor-Aris Dispersion.- 4.3.3 Evaluation of u' and b.- 4.3.4 Results for ks = 0 and In-Line Arrangement.- 4.3.5 Results for ks ? 0 and General Arrangements.- 4.4 Three-Dimensional Periodic Structures.- 4.4.1 Unit-Cell Averaging.- 4.4.2 Evaluation of u', b, and D.- 4.4.3 Comparison with Experimental Results.- 4.4.4 Effect of Darcean Velocity Direction.- 4.5 Dispersion in Disordered Structures-Simplified Hydrodynamics.- 4.5.1 Scheidegger Dynamic and Geometric Models.- 4.5.2 De Josselin De Jong Purely Geometric Model.- 4.5.3 Saffman Inclusion of Molecular Diffusion.- 4.5.4 Horn Method of Moments.- 4.6 Dispersion in Disordered Structures-Particle Hydrodynamics.- 4.6.1 Local Volume Averaging.- 4.6.2 Low Peclet Numbers.- 4.6.3 High Peclet Numbers.- 4.6.4 Contribution of Solid Holdup (Mass Transfer).- 4.6.5 Contribution Due to Thermal Boundary Layer in Fluid.- 4.6.6 Combined Effect of All Contributions.- 4.7 Properties of Dispersion Tensor.- 4.8 Experimental Determination of D.- 4.8.1 Experimental Methods.- 4.8.2 Entrance Effect.- 4.8.3 Effect of Particle Size Distribution.- 4.8.4 Some Experimental Results and Correlations.- 4.9 Dispersion in Oscillating Flow.- 4.9.1 Formulation and Soluti
Convective heat tranfer is the result of fluid flowing between objects of different temperatures. Thus it may be the objective of a process (as in refrigeration) or it may be an incidental aspect of other processes. This monograph reviews in a concise and unified manner recent contributions to the principles of convective heat transfer for single- and multi-phase systems: It summarizes the role of the fundamental mechanism, discusses the governing differential equations, describes approximation schemes and phenomenological models, and examines their solutions and applications. After a review of the basic physics and thermodynamics, the book divides the subject into three parts. Part 1 deals with single-medium transfer, specifically with intraphase transfers in single-phase flows and with intramedium transfers in two-phase flows. Part 2 deals with fluid-solid transfer processes, both in cases where the interface is small and in cases where it is large, as well as liquid-liquid transfer processes. Part 3 considers three media, addressing both liquid-solid-solid and gas-liquid-solid systems.