Learning to Classify Text Using Support Vector Machines
-12 %

Learning to Classify Text Using Support Vector Machines

 Book
Besorgungstitel| Lieferzeit:3-5 Tage I

Unser bisheriger Preis:ORGPRICE: 149,79 €

Jetzt 131,82 €*

Alle Preise inkl. MwSt. | ggf. zzgl. Versand
ISBN-13:
9780792376798
Einband:
Book
Erscheinungsdatum:
30.04.2002
Seiten:
224
Autor:
Thorsten Joachims
Gewicht:
502 g
Format:
235x155x18 mm
Sprache:
Englisch
Beschreibung:

The SVM approach is efficient in training and classification, and it comes with a learning theory that can guide real-world applications. This book gives a description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, and a statistical learning model of text classification.
Foreword; T.Mitchell, K. Morik. Preface. Acknowledgments.
Notation. 1. Introduction. 2. Text Classification. 3. Support Vector Machines.
Part Theory. 4. A Statistical Learning Model of Text Classification for SVMS. 5. Efficient Performance Estimators for SVMS.
Part Methods. 6. Inductive Text Classification. 7. Transductive Text Classification.
Part Algorithms. 8. Training Inductive Support Vector Machines. 9. Training Transductive Support Vector Machines. 10. Conclusions.
Bibliography. Appendices. Index.
Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications.Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning.